NUMERICAL MODELING OF THE INTERACTION OF A WATER DROP WITH A STRONG
AIR SHOCK WAVE
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In an interaction with a weak shock wave, a drop can be treated as a solid particle.
Diffraction of an air shock wave on solids has been studied theoretically and experimentally
[1-3]. The deformation of the drop must be considered in order to describe an interaction
with a strong shock wave correctly. The processes during the interaction of an incompres-
sible gas flow with deformable drops have been studied theoretically [4-61. A method to
calculate the interaction of a water drop with a plane air shock wave has been suggested
[7] in which it is assumed that the drop is flattened in the direction of the flow to an
ellipsoid of rotation (a spheroidal condition is also used in [4] and [5]). The action of
air [shock] waves on drops of various liquids has been studied experimentally [8-13].

1. TFormulation of the Problem; Mathematical Model. Let a drop at rest in the gas be
hit by a plane shock wave. In the general case, the motion of the liquid and the surround-
ing gas is described by the complete Navier—Stokes equations:
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with coupling boundary conditions at the contact surface, whose position is not known a
priori, but must be determined during the solution. Here p is the density; V is the velocity
vector; g is the gravity acceleration vector; u is the dynamic viscosity coefficient; 5ij

is the Kronecker delta; p is the pressure; e is the total energy of a unit volume of the
material; k is the thermal conductivity; T is the temperature; and t is t1me Equation (1.1)
is written for each of the interacting materials.

We now examine an approximate solution to the problem. Due to the short time of the
interaction process, we will not consider thermal phenomena; moreover, we will neglect the
viscosity of the liquid and the gas, and also the force of gravity. In this case, the inter-
action is described by the Euler equations
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which are written for plane flow symmetry (w = 0) and axial flow symmetry (w = 1; the direc-
tion of the normal to the front of the incoming shock wave coincides with the direction of
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the Oy axis of symmetry of the drop). Here u and v are components of the velocity vector V
along the x and y axes; the subscript i takes on the values 1 and 2, which correspond to the
gas and liquid, respectively.

Equations (1.2) are considered along with the equations of state of the gas and liquid,
which have the form

P=0u—1)pen P = (—1)pse;s + 2 (02 — Poa)s (1.3)
where k; = 1.4; k, = 5.59; cy, = 1515 m/sec; and py, = 1000 kg/m3.

For a given Mach number of the incoming shock wave (M = D/c,, where D is the propaga-
tion velocity of the shock front), the displacement velocity of the gas vg and its density
pg and pressure pg behind the front are determined from the expressions
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which follows from the Rankine—Hugoniot relationships {(c, is the sound speed, and the sub-
script O denotes parameters in an unperturbed gas).

By convention, the interaction of the drop with the shock wave can be divided into an
initial stage and a basic stage. From the moment the front of the incoming air wave touches
the surface of the drop, a shock wave propagates through it. As can be seen from one-dimen-
sional calculations, for example for an air shock with M = 11, the velocity of the shock
wave propagating through the drop is equal to 1630 m/sec, and the displacement velocity of
the liquid behind the front is 67 m/sec. During the time for the air shock to travel a dis-
tance of one drop diameter d,, the forward part of the drop is displaced by 0.02-d,, and the
change of the transverse dimension of the drop is 0.01-d; from Burger's theoretical model
{9]. TFrom these data it can be seen that, in the initial or ''wave' stage, the drop hardly
"feels'" the effect of the air shock wave. The second stage is more significant; because
during this stage the drop accelerates and deforms, due to the nonuniform pressure distribu-
tion on the drop surface.

For a more complete representation of the processes which occur during the interaction,
we now examine the initial stage of shock wave diffraction in more detail on a spherical
drop of a compressible liquid.

When an air shock wave interacts with a spherical liquid drop, a system of compatibil-
ity equations describes the flow of the liquid and gas near the point where the incoming
shock wave contacts the drop surface in coordinates which move with the contact surface
(Fig. la):
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where the subscripts n and t denote the normal and tangential components -of the velocity
vectors to the attached shock wave and the primes denote quantities for the reflected and
refracted shock waves. In the case of a 'rigid" drop, the system of equations (l1.5) can
be transformed and reduced to the equation
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We now show an approximate method to solve the system (1.5), which substantially sim-
plifies the calculations. For this purpose we make use of the expressions

coM sin (¢ + ¢) — ¢y sin @ = 0, ¢M sin (B — ¢) — ¢, sin ¢ = 0, (1.7)

which relate the inclination angles of the reflected and refracted shock waves to the prob-
lem parameters which follow from Huygens principle [14]. We evaluate the propagation veloc-
ities ¢; and c, of the perturbations from the relationships
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After the angles a and B are calculated from Eqs. (1.7), the other parameters can be calcu-
lated explicitly from (1.5). The value of the pressure at the contact point is obtained
from the expression

P~ Ps 1 PVm (Ua — vyy) tg (@ — @),

which follows from (1.5) and the approximate equality y = ¢.

The exact solution of the system of equations (1.5) is obtained by using Newton's
iteration method. We note that the approximate solution essentially coincides with the ex-
act solution for the Mach numbers examined.

Figure 1b shows the inclination angles o and B of the connected shock waves (curves 1
and 2) as functions of the contact angle ¢ for a shock wave with M = 2 (solid curves), which
were obtained in the calculations. The circles denote the solution for a "rigid" sphere
(M = 2) obtained from (1.6). It can be seen that the drop can be considered "rigid" up to a con-
tact angle ® < % = 27°., Here @4 is the critical angle, that is the maximum angle ¢ at
which a solution to the system of Eqs. (1.5) still exists. We note that %s is less than
the critical angle @sx for a "rigid" sphere, which separates the regular stage of reflection
from the Mach stage. This is related to the fact that for ?> @z the velocity of perturba-
tions, which propagate through the drop, exceeds the velocity of the motion of the contact
point between the front of the incoming shock wave and the drop surface; consequently a
configuration cannot exist with three shock waves (the incoming, the reflected, and the re-
fracted), which are joined to the contact point. In this case, instead of a refracted shock
wave, a rarefaction wave is formed, We note that, due to its large inertia and the small
interaction time, the liquid is accelerated only insignificantly in the shock wave, so that
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the drop can also be considered as a solid particle for contact angles exceeding the criti-
cal angle.

As M of the incoming shock wave increases, the value of ¢« asymptotically approaches
the angle ¢4s for a "rigid" sphere; starting with M = 3, @4« practically coincides with
and tends to a limiting value of ~39°. The dashed curves in Fig. 11> denote the dependences
for a shock wave with M = 5.

From this analysis it follows that the liquid compressibility, which must be considered
in the wave stage of interaction, turns out not to be that substantial as a whole, so that
hereafter the drop is considered incompressible. Thus, the general system of equations (1.1)
reduces to two groups of equations: the Euler equations (1.2) for the gas and the Navier—
Stokes equations
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for the drop. Here v is the kinematic viscosity (v = u/p,); the notation is the same as in
(1.1) and (1.2).

2. Numerical Solution. In order to solve the system of equations (1.2), we used
Godunov's method [15], and for (1.8) we used the method of [16]. The deformation of the
drop was determined by using a modification of the method of markers [16].

Because the gas density is significantly less than the liquid density, simplified bound-
ary conditions were used at the contact boundary. The calculation of each time step of the
coupled problem was divided into two stages: first the “external" problem of gas flowing
around the drop was solved for a movable surface which was impermeable to the gas; then,
from the known external pressure from the first stage, the liquid flow was calculated by
considering the contact surface a "free" boundary. From the stability conditions, the al-
lowable time step for the gas was 5-10 times less than that for the liquid; therefore, as
a rule, one step for the liquid mction preceded several steps for the gas. This "decomposi-
tion" of the boundary conditions made it easy to consider the surface tension as a Laplace
correction to the external pressure, which was calculated in the first stage. We note that
for the strong shock waves and large drops considered here, the forces from the surface ten-
sion are more than an order of magnitude less than the aerodynamic forces and therefore had
no substantial effect on the interaction process.

A series of calculations were done for the shock-wave interaction of a water drop with
an initial spherical form (d; = 2 mm). The Mach number was varied from 3 to 15. Data are
presented below for M = 11. The results for other Mach numbers are qualitatively similar.
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Figures 2a-2d show the position of the markers which characterize the deformation of
the drop at times t = 0, 4.7, 8.7, and 11.5 usec. It can be seen that over time the drops
deform, compress in the direction of the axis of symmetry, and expand in the radial direc-
tion.

Figures 3a and 3b show characteristic fragments of the pressure and velocity fields at
time t = 1.9 pusec. In Fig. 3a the numbers 10 and 1 denote the isobars with the minimum and
maximum pressures (0.02 and 0.53 MPa). It can be seen that the picture of the interaction
is close to that for flow around a solid body. An outgoing shock wave also forms ahead of
the drop; however, as opposed to [the case of] a solid body, its shape and position change
with time due to the drop deformation and acceleration.

Interaction of a drop with a strong shock wave is characterized by breakoff of very
fine particles (spray) from the drop surface. The drop appears wrapped by a spray cloud
[8-13]. Under these conditions it is rather difficult to determine the actual shape of the
drop experimentally. Figure 4 shows trajectories of liquid particles 1 pm and 25 pm in
diameter (denoted by dashed and solid lines, respectively), which are broken off from vari-
ous points of the front surface of the drop. The trajectory problem for known gas dynamic
parameters near the drop was solved numerically by integrating a system of ordinary differ-
ential equations of motion by the Runga—Kutta method:

du, 3 P dv, 3 ¢yl
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Here ry is the particle radius; the subscripts g and & denote the gas and liquid parameters;
and the drag coefficients cy and cy are calculated from the Henderson equations [17]. The

trajectories of the fine particles with a diameter up to 5 um essentially coincide with the
flow lines of the gas. As the diameter of the particles increases, their trajectories be-

come distributed farther from the drop surface, due to their larger inertia. The length of
the trajectory from the drop also depends on its initial position at the moment of breakoff.

Figure 5 shows the relative displacement of a drop (Ax/d,) along the axis of symmetry
as a function of the dimensionless time t© = t/t,, where t, = dovg ' (p,/pg)®:°. The scolid
lines describe the curve Ax/d, = 0.8 12, which approximates experimental results [8, 131,
while the dashed curves are obtained from calculations. A noticeable deviation of the cal-
culated results from the experimental data is observed after time t = 2.9 usec, which evi-
dently is related to not considering the mass loss of the drop due to "abrasion."

Qualitatively similar results are presented in [18]. Consideration of the drop compres-
sibility places almost overwhelming limitations on the time step; therefore practical results
can be obtained only for large Mach numbers. We also note that, as opposed to [18] where
the Euler equations (1.2) were used to calculate the liquid motion, there are no zones moving
in the negative direction within the drop at any time during the calculation.
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